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Uncertainties:
I wind speed,
I vertical extrapolation,
I horizontal extrapolation,
I power function,
I long-term extrapolation,
I measures,
I cut-out, unavailability.

Management:
I safe regulation (s, m),

I storage, trading (h),

I maintenance (d).
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Power of the wind stream Pw (v) = 1
2ρSv

3.

Betz’ limit of wind turbine power Pmax(v) = 16
27Pw (v).

This power is transformed and we consider the power (transfer)
function P(v) (cannot reach in practice 70% of the Betz’ limit).
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Simulated wind speed dataset of the NREL.
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Real wind speed dataset in Veulettes-sur-Mer, France.
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Lots of studies of dynamical models for modeling and forecasting:

– statistical models (time series, Markov models, neural networks,
. . . ) for seconds, minutes, hours;

– meteorological models for days and weeks.

We are studying two particular diffusion process models and consider
their evaluation for modeling and short-term forecasting. They are
entries for stochastic control problems for storage and trading.
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We consider homogeneous diffusion processes that are Markov
processes for which the transition probability density functions
p(t, y ; x , ϑ) satisfy the Fokker-Planck-Kolmogorov equation

∂

∂t
p = − ∂

∂y
(v0(y , ϑ)p) +

1
2
∂2

∂y2 (v1(y , ϑ)2p), y ∈ R, t > 0,

with initial condition p(0, y ; x , ϑ) = δ(y − x).

We have evaluated the Cox-Ingersoll-Ross (CIR) model (B. and Ben-
soussan 2016) and the 3-parameter marginal Weibull model (B. and
Bensoussan, preprint). The transition probability density functions
are in closed form for the CIR model (Feller, 1951) but not for the
marginal Weibull diffusion model.
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Construction of the 3-parameter marginal Weibull diffusion model is
inspired from (Bibby, Skovgaard et Sorensen, 2003). We compute
v1 such that the stationary distribution is Weibull.

Using the F-P-K equation, the stationary distribution f satisfies

− ∂

∂y
(v0(y , ϑ)f (y)) +

1
2
∂2

∂y2 (v1(y , ϑ)2f (y)) = 0, y ∈ R.

and by integration

−v0(y , ϑ)f (y) +
1
2
∂

∂y
(v1(y , ϑ)2f (y)) = 0, y ∈ R.

Given the stationary distribution f and v0, we can find v2
1 .
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Fixing the linear drift v0(y , ϑ) = ϑ1(ϑ2 − y) and integrating the
previous equation leads to∫

R

v0(y , ϑ)f (y)dy = 0 =⇒ ϑ2 =

∫
R

y f (y) dy .

It can be shown generally that for the mean-reverting diffusion pro-
cess

(
Y y0
t , t ≥ 0

)
lim
s→∞

E
((
Y y0
s − EY y0

s

) (
Y y0
s+t − EY y0

s+t

))
varY y0

s
= exp (−ϑ1t) .
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y0

p(t, ·)

p̂(0)(t, ·)

Yt

Ŷ
(0)
t
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Homogeneous diffusion processes
(
Y y0
t , t ≥ 0

)
admit a natural point

forecast
Ŷ

(0)
t = Eϑ

(
Y y0
t

)
=

∫
R

y p(t, y ; y0, ϑ)dy

and a probabilistic forecast with their transition densities

p̂(0)(t, ·) = p(t, · ; y0, ϑ).

Cox-Ingersoll-Ross diffusion and marginal Weibull diffusion processes
with linear drift term v0(y , ϑ) = ϑ1(ϑ2 − y) have an explicit point
forecast

Eϑ
(
Y y0
t

)
= ϑ2 + (y0 − ϑ2) exp (−ϑ1t) .
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For a well-specified model setting (Y obs
t = Y y0

t ), we have

MSE (t) = E
(
(Y y0

t )2)− (EY y0
t

)2
= u(t, y0)−

(
EY y0

t

)2
with u(t, x) solving the Feynman-Kac pde, i.e.

∂u

∂t
= v0(x , ϑ)

∂u

∂x
+

v2
1 (x , ϑ)

2
∂2u

∂x2

with
u(0, x) = x2.
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Estimation in homogeneous diffusion process

It is possible to show van Trees inequality in several statistical exper-
iments, namely, for any sequence of estimators (Tn, n ≥ 1),

lim inf
C→∞

lim inf
n→∞

sup
|ϑ−ϑ0|<Cϕn(ϑ0)

Eϑ

(
`
(
ϕn(ϑ0)

−1 (Tn − ϑ)
))

≥ E
(
`
(
I (ϑ0)

− 1
2 ξ

))
where ξ is a standard Gaussian random variable.

We are looking for an asymptotically efficient sequence of estimators
that reaches the lower bound.
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Let Θ ⊂ Rd . A family of measures {Pn
θ , θ ∈ Θ} is called locally

asymptotically normal (LAN) at θ0 ∈ Θ if there exist nondegenerate
d × d matrices ϕn(θ0) and I (θ0) such that for any u ∈ Rd , the
likelihood ratio

Zn(u) =
dPn

θ0+ϕn(θ0)u

dPn
θ0

admits the representation

Zn(u) = exp
(
〈u, ζn(θ0)〉 − 1

2
〈I (θ0)u, u〉+ rn(θ0, u)

)
, (1)

where
ζn(θ0)→ N (0, I (θ0)), rn(θ0, u)→ 0 (2)

in law under Pn
θ0
.
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LAN property of the likelihoods has been established for several sta-
tistical experiments:
1. sample of i.i.d. r.v. (second Le Cam’s Lemma);
2. sample of independent but inhomogeneous r.v. with the

Lindeberg condition;
3. sequence of an ergodic Markov chain;
4. strictly elliptic and ergodic diffusions;
5. diffusions with observational noise;
6. Levy processes;
7. fractional Gaussian noise;
8. and others . . .
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Let (Yt , t ≥ 0) be the solution of a (fractional) SDE whose law
depends on the unknown parameter ϑ.

∆n
tnn

y0

tn10 = tn0

Our aim is to give asymptotical properties of estimators of ϑ given
the observation of the path on a discrete grid 0 < tn1 < . . . < tnn , as
n→∞. Asymptotic properties depend on the convergence scheme.
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Large sample. Here ∆n = ∆ > 0 is fixed and, under proper assump-
tions (smoothness, ergodicity, uniform ellipticity), the LAN property
of the likelihoods is satisfied (Roussas 72) with rate ϕ(n) = 1√

n
and

the Fisher information matrix is equal to

I(∆, ϑ)i ,j =

∫
R

∫
R

∂

∂ϑi
log p

∂

∂ϑj
log p · p dyµϑ(dx) (3)

where µϑ is the invariant measure of the diffusion process. Conse-
quently, the lower bound for the variance of the estimators can be
derived precisely for any sequence of estimators (ϑn, n ≥ 1),

lim
C→∞

lim inf
n→∞

sup
|ϑ−ϑ0|< C√

n

Eϑ`
(√

n
(
ϑ̃n − ϑ

))
≥ Eϑ0`

(
I(ϑ0)−1ξ

)
with ξ ∼ N (0, I ), and ` is a polynomial cost function.
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Mixed scheme: Here n∆n → ∞, ∆n → 0 and the LAN property
of the likelihoods have been established (Gobet, 2002) under proper
conditions (smoothness, ergodicity, uniform ellipticity) with different
rates for ϑ1 (drift parameter) and ϑ2 (diffusion coefficient parame-
ter). Namely ϕ(n)1,1 = 1√

n∆n
and ϕ(n)2,2 = 1√

n
, respectively, and

the Fisher information matrix is given by

I(ϑ)i ,j =

∫
R

∂

∂ϑ1,i
v0(y , ϑ1)

∂

∂ϑ1,j
v0(y , ϑ1) · v1(y , ϑ2)−2µ(dy)

and

I(ϑ)q+i ,q+j = 2
∫
R

∂

∂ϑ2,i
v1(y , ϑ2)

∂

∂ϑ2,j
v1(y , ϑ2)·v1(y , ϑ2)−2µ(dy).
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The YUIMA Project is mainly developed by statisticians who actively
publish in the field of inference for stochastic differential equations.

The YUIMA Project Core Team with write access to the source code,
currently consists of:

I Alexandre Brouste (Le Mans)
I Masaaki Fukasawa (Osaka)
I Hideitsu Hino (Waseda U.)
I Stefano M. Iacus (Milan)
I Kengo Kamatani (Tokyo)
I Hiroki Masuda (Kyushu U.)
I Yasutaka Shimizu (Osaka)
I Masayuki Uchida (Osaka)
I Nakahiro Yoshida (Tokyo)
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