Modelling and understanding human longevity: What can be learned from population dynamics?

Sarah Kaakaï

Laboratoire Manceau de Mathématiques, Le Mans Université

Based on joint works with N. El Karoui, H. Labit-Hardy and S. Arnold

Outline

1 Introduction

2 How can a cause-of-death reduction be compensated for by the population heterogeneity? A dynamic approach.

3 Birth-Death-Swap processes

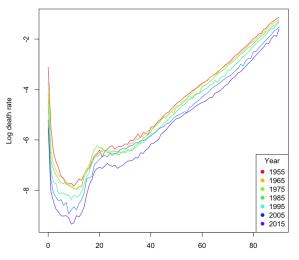
Longevity risk

- Population ageing and uncertainty around future longevity developments are producing multiple challenges for governments and private actors:
 - Sustainability of pay-as-you-go public pension systems.
 - Longevity risk management for insurers and funded pension systems: Increased regulatory capital (Barrieu et al.(2012)).
- Data and mortality models used for decision making in state pension and public health reforms, regulatory reserving policies, longevity financial products...
- Important tradition of mortality data collection:
 - Multiple available databases (National statistical institutes, UN, WHO, HMD, ...).

Traditional mortality modelling

Classical tool for modelling and forecasting human longevity:

Age-specific mortality rates.


- Standard mortality models: parametric models estimated from the data.
- Gompertz model (1825):

$$\mu(\mathbf{a}) = \alpha \mathbf{e}^{\beta \mathbf{a}}.$$

 Now there are multiple models used for mortality modelling and forecasting: Lee-Carter (1992), Renshaw and Haberman (2006), Cairns, Blake and Dowd (2006), Ludkovski, J Risk, Zai (2018)...

Figure: French male log death rates, 1950-2015

FRATNP: male death rates (1955-2015)

Age

(source: HMD)

Challenges

Observed mortality is a by-product of population dynamics (not taken into account in standard models):

→ Result of complex demographic and social mechanisms.

Limitations of only studying age-specific mortality rates:

- Not possible to measure impact of macro environment.
 - $\, {\scriptstyle {\scriptstyle {\rm L}}} \,$ Ex: Importance of macro public health measures.
- Impact of the population not taken into account:
 - $\, \downarrow \,$ Aggregation issues.
 - → Impact of population, cohort size, interactions?
- Need for finer-grained population dynamics models in the presence of heterogeneity (longevity varies with individual characteristics).

Socioeconomic gradient in mortality

How can a cause-of-death reduction be compensated for by the population heterogeneity? A dynamic approach, with H. Labit Hardy, S. Arnold and N. El Karoui, IME.

- Research on the relationship between socioeconomic status (SES) and mortality is longstanding (Villermé (1830), General Register Office (1851))
 Consensus on the strong correlation between SES and mortality.
- New trends observed in the past decade: increase in socioeconomic and geographical gaps in health and mortality.
 - Ex: Gap in male life expectancy at 65 between higher managerial and routine occupations (England Wales): 2.4 years 1982-1986, 3.9 years 2007-2011).
 - National Research Council Report (2011) on diverging trends in longevity.

Taking heterogeneity into account

- Not taking into account heterogeneity can lead to:
 - Increased inequalities due to public health reforms (Alai et al. (2017)) or "unfair" redistribution properties of pension systems (Holzmann et al. (2017)).
 - Errors in funding of annuity and pension obligations (Meyricke and Sherris (2013), Villegas and Haberman (2014)).
- Better understanding of heterogeneity allows for a better understanding of the basis risk (Longevity basis risk report (2014)).

More and more data released by international organizations and national statistical institutes \Rightarrow new issues can be investigated.

Modelling heterogeneous mortality rates

- Growing literature on the joint modelling and forecasting of the mortality of socioeconomic subgroups Bensusan (2010), Jarner and Kryger (2011), Villegas and Haberman (2014), Cairns et al. (2016)
- Bringing many challenges:
 - **Consistency** of sub-national and national estimates/forecasts (Shang and Hyndman (2017), Shang and Haberman (2017)).
 - Interpreting targets set by institutions (Department of Health, WHO) (Alai et al. (2017)).

Modelling heterogeneous mortality rates

- Growing literature on the joint modelling and forecasting of the mortality of socioeconomic subgroups Bensusan (2010), Jarner and Kryger (2011), Villegas and Haberman (2014), Cairns et al. (2016)
- Bringing many challenges:
 - **Consistency** of sub-national and national estimates/forecasts (Shang and Hyndman (2017), Shang and Haberman (2017)).
 - Interpreting targets set by institutions (Department of Health, WHO) (Alai et al. (2017)).

Our approach: to take into account all population data.

How do changes in the socioeconomic composition of the population affect aggregated indicators? Could we miss a cause-of-death reduction in the presence of heterogeneity?

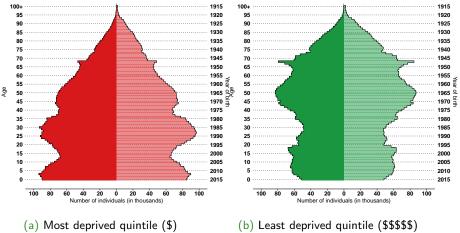
Outline

1 Introduction

- **2** How can a cause-of-death reduction be compensated for by the population heterogeneity? A dynamic approach.
 - Data
 - Population dynamics model
 - Results
- 3 Birth-Death-Swap processes

Data

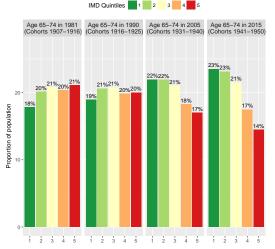
- Two datasets:
 - 1981-2007: Department of Applied Health Research, UCL.
 - 2001-2015: Office for National Statistics, UK.
- English cause-specific number of deaths and mid-year population estimates per socioeconomic circumstances, age and gender.


Socioeconomic circumstances are measured by the Index of multiple deprivation (IMD), based on individuals' postcodes.

- Small areas (LSOA) are ranked based on seven broad criteria: income, employment, health, education, barriers to housing and services, living environment and crime.
- This ranking makes it possible to divide the population into 5 quintiles with about the same number of individuals in each quintile.

Age-pyramids by IMD quintile, 2015

Type Males Females


Type Males Females

Median age: 33y

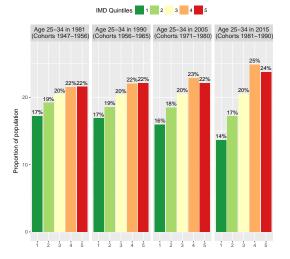

b) Least deprived quintile (\$\$\$ Median age: 44.2y

Figure: Composition of males age class 65-74 in years 1981, 1990, 2005, 2015.

▶ Decrease in deprivation over time for older age classes. (IMD 1+2: $28\% \rightarrow 46\%$).

Figure: Composition of males age class 25-35 in years 1981, 1990, 2005, 2015.

▶ Increase in deprivation for younger age classes. (IMD 1+2: $36\% \rightarrow 31\%$).

Heterogeneous population dynamics

- Simple age-structured population dynamics framework to illustrate different impacts of heterogeneity on the aggregated mortality.
- Deterministic evolution of each subgroup is described by a McKendrick (1926) -Von Foerster (1959) time dependent model.
- Equation for each gender $\epsilon = m$ or f and subgroup:
 - Ageing law:

$$(\partial_a + \partial_t)g_j^\epsilon(a, t) = -\mu_j^\epsilon(a, t)g_j^\epsilon(a, t)$$

Birth law:

$$g_{j}^{\epsilon}(0,t)=\int_{0}^{a^{\dagger}}p^{\epsilon}g_{j}^{f}(a,t)b_{j}\left(a,t
ight)da$$

Initial Pyramid:

 $g_j^{\epsilon}(a,0)$

Aggregated population

- Aggregated population:
 - $g^{\epsilon}(a,t) = \sum_{j=1}^{p} g_{j}^{\epsilon}(a,t)$
 - Ageing law: $(\partial_a + \partial_t)g^{\epsilon}(a, t) = -d^{\epsilon}(a, t)g^{\epsilon}(a, t)$
- Aggregated death rate:
 - Weighted sum of the subpopulations death rates:

$$d^{\epsilon}(a,t) = \sum_{j} w_{j}^{\epsilon}(a,t) \mu_{j}^{\epsilon}(a,t), \quad w_{j}^{\epsilon}(a,t) = \frac{g_{j}^{\epsilon}(a,t)}{g^{\epsilon}(a,t)}$$
(1)

- d depends non-linearly on the population inputs: g_j^0 , μ_j , and b_j .
- Even with time-independent rates $\mu_i^{\epsilon}(a, \mathbf{X})$

 \Rightarrow the aggregate death rate $d^{\epsilon}(a, \mathbf{t})$ depends on time, due to changes in the composition of the heterogeneous population.

Numerical results

 Goal: To use the population dynamics model in order to analyse different impacts of heterogeneity on the aggregated mortality.

Two applications

- I Impact of the age-pyramid heterogeneity.
 - → Compare order of magnitude of mortality changes induced by compositional changes to constant mortality improvements.
- 2 Cause specific mortality reduction vs "reverse" cohort effect.
 - Gompensation of cause-specific mortality reduction due to adverse compositional changes in some cohorts.
- We consider a synthetic population composed of the most and least deprived IMD quintile (for illustrative purposes).

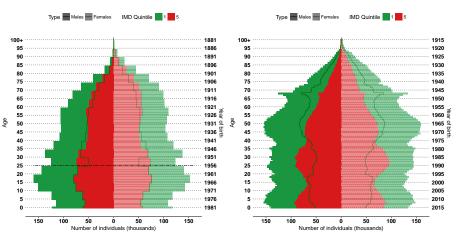
Three demographic scenarios

Scenario A: Population evolution with time-invariant mortality

Compositional changes isolated \Rightarrow death rates in each subpopulation do not depend on time:

$$d^{\epsilon}(a,t) = \mu_1^{\epsilon}(a)w_1^{\epsilon}(a,t) + \mu_5^{\epsilon}(a)w_5^{\epsilon}(a,t).$$

Scenario B: Population evolution with mortality improvement Constant annual mortality improvement rates of r = 0.5%:


$$d^{\epsilon}(\mathbf{a},t) = \mu_1^{\epsilon}(\mathbf{a})(1-r)^t w_1^{\epsilon}(\mathbf{a},t) + \mu_5^{\epsilon}(\mathbf{a})(1-r)^t w_5^{\epsilon}(\mathbf{a},t).$$

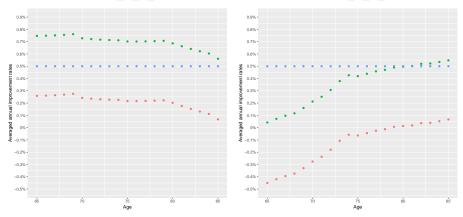
C Scenario C: Mortality improvements <u>without</u> composition changes

$$d^{\epsilon}(\mathbf{a},t) = \mu_1^{\epsilon}(\mathbf{a})(1-r)^t w_1^{\epsilon}(\mathbf{a}) + \mu_5^{\epsilon}(\mathbf{a})(1-r)^t w_5^{\epsilon}(\mathbf{a}).$$

Mortality rates and initial age-pyramid fitted to the data for years 1981 and 2015.

Initial age pyramids

(b) 2015 Inputs


(a) 1981 Inputs

Mortality improvement rates (males)

Figure: Average annual mortality improvement rates over years 0-30

Scenario • A • B • C

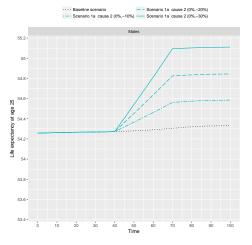
Scenario • A • B • C

(a) 1981 Inputs

(b) 2015 Inputs

- 1981 initial population: positive contribution from changes in the composition of the 65+ age class.
- ▶ 2015 initial population: negative contribution from composition changes ⇒ might offset future mortality improvement rates.
- Order of magnitude of age-pyramid heterogeneity impact can represent 0.2%- 0.5% in annual mortality improvement rates.

Example of scenario illustrating impact of changes of demographic rates:

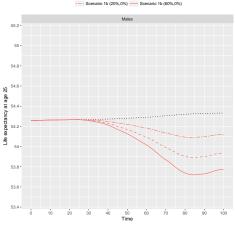

- Cause-specific reduction of mortality vs "reverse" cohort effect (adverse composition changes quantified by changes in birth patterns).
- Difficulty in interpreting the data at the aggregated level when coupled changes of different nature occur.
- Comparison with Baseline ("neutral") scenario:

Constant demographic rates and population composition.

Indicator: Period life expectancy at 25 (average lifetime remaining for an imaginary individual living in the mortality conditions of year t).

Scenario 1a: Cause of death reduction

Figure: Reduction in mortality rates from cardiovascular disease (CVD)

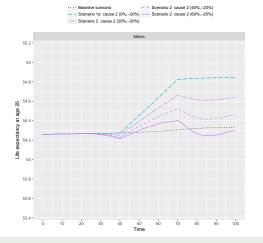


Reduction of 10, 20 and 30% over a period of 30 years, starting at t = 40.

Scenario 1b: "Reverse" Cohort effect

Scenario 1b (40% 0%)

Baseline scenario



Reverse cohort effect:

Increase in birth rates in most deprived subgroup over period [0, 20].

▶ 760% ⇒ cohorts composed of 63% of most deprived subgroup.

Scenario 2: Combined CoD reduction and cohort effect

When the population heterogeneity is not taken into account, cause-of-death mortality reduction could be compensated for and/or misinterpreted depending on the population composition evolution.

Outline

1 Introduction

2 How can a cause-of-death reduction be compensated for by the population heterogeneity? A dynamic approach.

3 Birth-Death-Swap processes

Birth-Death-Swap processes

Pathwise construction of Birth-Death-Swap systems leading to an averaging result in presence of two

timescales, with N. El Karoui

- Goal: To study the random evolution of an heterogeneous population including:
 - A time-varying random environment.
 - Model changes in the population's composition induced by interacting individuals changing characteristics.
- Main contributions:
 - General mathematical framework and tools to study such processes.
 - Study of the aggregated "macro" dynamic produced by such models.
- Averaging result: aggregated mortality rates are approximated by "averaged" rates depending non-trivially on the number of individuals in the population.

Thank you for you attention!