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Purpose and summary

Purpose:

Challenge: to understand “price” dynamics over various scales and
how they may change with time.

Idea: to adapt and exploit elaborated tools developed for turbulence
data.

Summary:

Price data have a rich multiscale/memory structure that may vary
over time.

The monitoring of these variations shows regime switches.

The quantitative analysis is carried out by a wavelet decomposition
method.
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History

Fractional/memory processes:

Kolmogorov (1940): turbulence

Hurst (1951): hydrology → Hurst parameter H.

Mandelbrot and Van Ness (1968): finance

Comte and Renault (1998): fractional stochastic volatility

Gatheral et al (2014): rough fractional stochastic volatility

A lot of work (in mathematics, physics, biology, ...) on transport,
diffusion, wave propagation in fractional media.
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Fractional Brownian motion (fBM)

• Fractional Brownian motion with Hurst exponent H ∈ (0, 1):

BH(t)

• Self-similar Gaussian process:

BH(at)
probability distribution∼ aHBH(t) for any a > 0

• Stationary increments:
H = 1/2: Independent increments (standard Brownian motion).
H < 1/2: Negatively correlated increments. Sample paths are continuous
but rougher than BM.
H > 1/2: Positively correlated increments. Sample paths are not
differentiable but smoother than BM.
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Example Brownian Motion Paths
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Standard price model

1960s: Paul A. Samuelson:
Increments of Brownian motion model “relative” price changes, essentially:

p(tn+1)− p(tn)

p(tn)
= σ(B(tn+1)− B(tn)),

with, in addition, possibly a deterministic drift.
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Modeling of prices: An alternative approach

1960s: Benoit Mandelbrot:
Increments of fractional Brownian motion model “relative” price changes,
essentially:

Rn+1 =
p(tn+1)− p(tn)

p(tn)
= σ(BH(tn+1)− BH(tn)).

→ Returns have “memory”:

ρH =
E[Rn+1Rn]

E[R2
n ]

= 22H−1 − 1.

In general there is “long-range” memory:

E[Rn+1 | Rn] = ρHRn

6= E[Rn+1 | Rn,Rn−1].
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Radical change of perspective: Hurst coefficient, H, and volatility, σ, are
the fundamental quantities.
The process σBH(t) scales as σ|t|H .
Illustration: St.dev(σBH(t)), t ∈ (0, 2), σ = 1:
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Classic case:
H = 1/2: independent increments.

Limit cases:
H → 1: Increments “equal”.
H → 0: Increments “alternate in sign”.
Remark: Rough case “almost” like a two-factor short- and long-scale
model.
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Crude Prices
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Oil price data from 1987 to 2017 for West Texas (red dashed line) and
Brent (solid blue line).

Josselin Garnier and Knut Sølna Fractional processes May 11, 2018 9 / 31



1980 1990 2000 2010 2020

Year

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

R
e

tu
rn

s

Raw  Returns Data

Brent

West Texas

Returns for West Texas Crude (red dashed line) and Brent Crude (solid
blue line).

Rn+1 =
p(tn+1)− p(tn)

p(tn)
, tn = n∆t
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Multi-fractional price model
→ Motivated by the data, let increments of multi-fractional Brownian
motion model “relative” price changes, essentially:

Rn+1 =
p(tn+1)− p(tn)

p(tn)
= σn(BHn(tn+1)− BHn(tn)).

Price p(t):
dp(t)

p(t)
= d(t)dt + dBH,σ(t)

where BH,σ is a multi-fractional process (Ht and σt are
time-dependent) (Lévy-Véhel 1995).

If Ht ≡ H and σt ≡ 1, then BH,σ = BH fractional Brownian motion.

→ Some issues:

Rapid Monte-Carlo simulation of price “paths”.

Estimation of the parameters.
↪→ use of wavelets.
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Wavelets

Main context: Signals may have frequency content that varies with
time. Ex: speech.

A Fourier decomposition gives the “global” frequency decomposition.

A wavelet decomposition gives a local characterization of the
frequency contents.

→ The wavelets are useful to detect changes in the multiscale character of
the prices.

Cf: Haar, Stromberg, Meyer 1984, Mallat ...
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The case of dyadic Haar wavelets

→ Decompose the signal into components with different lengths (scales):

Question: At any given period, how much energy is there in the different
scales?
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The case of dyadic Haar wavelets, continued

Denote the approximation coefficients at level zero (the data) by:

X = (a0(1), a0(2), ..., a0(2M)),

with M “dyadic” dimension. Then, at the scale j (corresponding to
frequency 2−j), define the approximation and difference/detail coefficients
by:

aj(n) =
1√
2

(aj−1(2n) + aj−1(2n − 1))

dj(n) =
1√
2

(aj−1(2n)− aj−1(2n − 1)) , for n = 1, 2, ..., 2M−j

for j = 1, ...,M.

X 7→
{{

dj(n), n = 1, · · · , 2M−j
}
j = 1, · · · ,M

}
& aM .
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Coefficients from the continuum

If a0(n) =
∫ n
n−1 Y (t)dt, then the detail coefficients at level j can

alternatively be expressed as:

dj(n) = 2−j/2

∫ ∞
−∞

ψ(t2−j − n)Y (t)dt

for Y , the (quasi-continuous) data, and with the mother wavelet defined
by

ψ(x) =


−1 if − 1 ≤ x < −1/2
1 if − 1/2 ≤ x < 0
0 otherwise

.

→ The difference coefficients correspond to probing the process at
different scales j and locations n.
→ Other functions ψ give rise to different wavelet families.
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Energy associated with scale

• For price p(t) = exp(σBH(t)), the coefficients (at origin) of logP are:

dj(0) = 2−j/2

(∫ 2j−1

0
BH(t)dt −

∫ 0

−2j−1

BH(t)dt

)

• For energy
Sj = E[dj(n)2] = σ2g(H)2j(2H+1),

and this gives
log(Sj) = log2(σ2g(H)) + j(2H + 1).

→ For smooth signals, H large, there is relatively more energy in the long
scales.
→ H, σ determines how volatility scales in the “cascade of scales”.
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Scale Spectrum
For a general wavelet family we define the scale spectrum by:

Ŝj =
1

2M−j

2M−j∑
n=1

(dj(n))2 , j = 1, 2, ...,M.

• Parameter Estimation: If the underlying process has the correlation
structure of fractional Brownian motion, the log-scale spectrum is affine in
scale, indeed as remarked:

E[log2(Ŝj)] = log2(σ2g(H)) + (2H + 1)j .

Some issues:

What are precision-of-parameter estimates?

How should the regression be carried out, what about inertial range?

What about other wavelets, non-decimated case, continuous wavelet
transform, optimality?

Robustness.
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Global Scale Spectrum

• Scale spectrum for the log prices:
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The “global power law” for West Texas data (red dashed line) and Brent
data (blue solid line).

• A global power law (with H = .5) is consistent with a situation in which
the Hurst exponent and volatility vary over subsegments.
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August 1990: Iraq’s invasion of Kuwait, initiating a period with high volatility and a high Hurst exponent.
January 2000: fear of the Y2K bug (?), which never occurred; ending a period with relatively high volatility and high Hurst
exponent.
September 2008: bankruptcy of Lehman Brothers, initiating a period with very high volatility and a high Hurst exponent.
July 2014: liquidation of oil-linked derivatives by fund managers, initiating a period with a very high Hurst exponent and high
volatility.

September 1989 Fall of the Berlin wall.
June 1997 Asian financial crisis.
July 1998 Russian financial crisis.
September 2010 European debt crisis.
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Scale Spectral analysis of inflation and government rate

• Quarterly data of inflation, πn, (red dashed) and federal interest rate rn
(solid blue):
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“Induced growth rate processes”

• Let the growth rate be defined by

log(pn)− log(p0) =
1

4

n∑
j=1

πj ,

and similarly for the interest.
• 3 main periods: 1954–1992; 1992–2006; 2006–2017
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Scale Energy Distribution Interest Inflation (Cumsum)

Mean: 4.1%, 2.2%, 1.6%. Hurst: 0.9, 0.8, 0.5. σ: 2.7%, 0.8%, 1.0%.
Outer scale: 19 years, 6 years, 2.5 years.
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Scale Energy Distribution Fed Rate (Cumsum)

Mean: 6.3%, 4.1%, 0.5%. Hurst: 0.9, 0.9, 0.6. σ: 3.7%, 1.7%, 0.8%.
Outer scale: 19 years, 6 years, 2.5 years.
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On Multiscale Correlations

• We compute the scale-based correlation of X ,Y by

C j
x ,y (∆n) = Cov

(
dx
j (n), dy

j (n + ∆n)
)
,

with dx the difference (Haar) coefficients associated with the process X
and with dy the difference (Haar) coefficients associated with the process
Y .
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Multiscale Correlation
Scale-based correlation: periods: 1954–1992; 1992–2006; 2006–2017
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Remark on representation: p(i)(t) = p
(i)
0 exp(d(t) + σB

(i)
H (t)) with

B
(i)
H (t) =

1

Γ(H + 1
2 )

∫
R

(t − s)
H− 1

2
+ − (−s)

H− 1
2

+ dB
(i)
s , i = 1, 2

B(2)(t) = ρB(1)(t) +
√

1− ρ2W (t).

Varying correlation: use “spectral representation” for fBm or wavelet
approach.
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Multiscale Correlation with Offset

Figures for periods as above: 1954–1992; 1992–2006; 2006–2017.
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↪→ In period three we have a “policy response time” on about one year
and a “stabilizing effect” on the yearly scale.
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On the Bitcoin Price
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Daily Price Data From CoinDesk price page:
http://www.coindesk.com/price.
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The Parameter Processes

2010 2012 2014 2016 2018
Year

0

100

200

300

400

500

V
o

la
ti
lit

y

Volatility in % per year

Bitcoin

2010 2012 2014 2016 2018

Year

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H

Hurst Exponent

Bitcoin

2010 2012 2014 2016 2018 2020

Year

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

P
ri
c
e
 i
n
 $

Raw Pricing Data

Bitcoin

Josselin Garnier and Knut Sølna Fractional processes May 11, 2018 28 / 31



The Global Spectrum!

10
-4

10
-2

10
0

10
2

Scale in Years

10
-4

10
-2

10
0

10
2

10
4

L
o
g
 R

e
la

ti
v
e
 E

n
e
rg

y

Price Power Law

Bitcoin

↪→ σ = 143%,H = 0.6.
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Regimes in Price Dynamics
H = .6, .4, .7;σ = 171%, 50%, 166%
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Final remarks

Multi-fractal behavior can be observed in various markets.

Important macro-economic variables seem to possess long memory
→ H matters!

We have developed a theory for the performance of the estimator.
→ The Haar wavelets are partly superior.

Power-law modeling is potentially important for regime-shift
detection, prediction, pricing, hedging,...

Viewing the market and prices through the lens of both roughness
and magnitude scaling (H, σ) gives “complementary” (economic)
insight about the market.

Further issues: High- and low-frequency data, multivariate time
series, periodicities, · · ·
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