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Rough volatility modeling

Rough volatility

Revolutionary modeling paradigm initiated by Gatheral, Jaisson and
Rosenbaum (’18) in the already seminal paper

“Volatility is rough”

Literature: https://sites.google.com/site/roughvol/home

Classical stochastic volatility: the price of one asset is given by

dSt = St

√
VtdWt ,

where the spot variance (Vt)t≥0 is a semimartingale.

Rough volatility: (Vt)t≥0 is no longer a semimartingale, but a process whose
trajectories can be rougher than the ones of Brownian motion (e.g.
fractional Brownian motion with a low Hurst parameter ≈ 0.1).

Empirical evidence comes from both

I time series data,

I option data.

estimated S&P 500 volatility
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Rough volatility modeling

Modeling with stochastic Volterra equations

Microstructural foundations of rough volatility (El Euch et al.) suggest stochastic
Volterra equations with fractional kernels on R+ as models for the spot variance.

Stochastic Volterra equation

Vt = g(t) +

∫
[0,t)

K (t − s)dZs , (SVE)

where Z is an Itô semimartingale with differential characteristics

drift b(V ), diffusions matrix a(V ), jump compensator ν(V , dξ).

The initial conditon g is deterministic and the kernel K ∈ L2
loc (including singular

fractional kernels K (t) ≈ tα, α ∈ (− 1
2 , 0)) .

Challenges

V is not (one-dimensional) Markovian.

V is not a semimartingale in general, in particular if K is a fractional kernel.
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Rough volatility modeling

Microstructural foundations - (Limits of) Hawkes processes

The difference of certain rescaled Hawkes processes modeling the market
order flow converges to a rough Heston model (see El Euch et al. (’18))

A (one-dimensional) Hawkes process N is a pure jump process that jumps by
1 with intensity

λt = g(t) +

∫ t

0

K (t − s)dNs .

Scaling λ and choosing g and K appropriately, the intensity λ converges in
the long run to a rough Cox Ingersoll Ross process

Vt = g(t) +

∫ t

0

(t − s)α

Γ(α)
κ(θ − Vs)ds +

∫ t

0

(t − s)α

Γ(α)

√
VsdWs ,

where α ∈ (− 1
2 , 0) and W a Brownian motion. Together with the log price

P, this yields the rough Heston model.

For further convergence results of so-called “affine forward intensity models”
to rough models see Gatheral & Keller-Ressel (’18).
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One dimensional affine Volterra processes

Affine Volterra processes on R+

Both processes are instances of affine Volterra processes on R+.
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Affine Volterra processes on R+

Both processes are instances of affine Volterra processes on R+.

Affine (or here rather linear) Markov processes are of the form

Vt = V0 +

∫ t

0
βVsds +

∫ t

0
σ
√

VsdBs

+

∫ t

0

∫
R+

ξ(µX (dξ, ds)− Vsµ(dξ)ds).

I B is a Brownian motion and µX the random measure of the jumps;

I σ, β ∈ R and µ a Lévy measure exhibiting a second moment;
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√
VsdBs

+
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0
K (t − s)

∫
R+

ξ(µX (dξ, ds)− Vsµ(dξ)ds).

I B is a Brownian motion and µX the random measure of the jumps;

I σ, β ∈ R and µ a Lévy measure exhibiting a second moment;

I K is a kernel in L2
loc(R+,R+)

I t 7→ g(t) a deterministic function satisfying certain conditions such that V is
nonnegative for all times.

For the intensity of the Hawkes process the parameters are σ = 0,
β = 1 and µ = δ1.
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One dimensional affine Volterra processes

Laplace Transform - Tractability

For standard finite dimensional linear Markov processes (analgously affine) it
holds:

Theorem
The Fourier-Laplace transform of the affine Markov process V is

E [exp(uVt)] = exp(V0ψ(t)),

where ψ is a solution of a generalized Riccati differential equation

∂tψ(t) = R(ψ(t)), ψ0 = u.

where R(u) = βu + 1
2σ

2u2 +
∫

(euξ − 1− uξ)µ(dξ).
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One dimensional affine Volterra processes

Laplace Transform - Tractability

For linear Volterra processes (analgously affine) it holds:

Theorem (C. and Teichmann (’20) )

Affine Volterra processes are projections of infinite dimensional affine processes on
appropriate function or measure spaces.

The Fourier-Laplace transform of V is

E [exp(uVt)] = exp(g(t)u +

∫ t

0

g(t − s)R(ψ(s))ds),

where ψ is a solution of a Riccati Volterra equation

ψ(t) = K (t)u +

∫ t

0

K (t − s)R(ψ(s))ds, t > 0.

where R(u) = βu + 1
2σ

2u2 +
∫

(euξ − 1− uξ)µ(dξ).

Remark: El Euch and Rosenbaum (’17) were the first to discover this form of the
Fourier-Laplace transform in the rough Heston case, Abi Jaber et al. (’17) then
for continuous affine Volterra processes.
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One dimensional affine Volterra processes

Infinite dimensional affine processes in a nutshell

Affine processes qualify as universal model class.

Certain nonnegative measure-valued jumps diffusion (superprocesses) are
well-known examples:

I Dawson Watanabe process and branching Brownian motion.
I The Riccati equations correspond here to certain non-linear PDEs,

(e.g. the logarithm of the KPP equation).
I The set of nonnegative measures on compacts is locally compact.
⇒ standard Feller and martingale problem theory can be applied.

Our work:
I We consider signed measure-valued lifts of affine Volterra processes.

Here the state space is no longer locally compact ⇒ Generalized Feller
theory

I The Volterra Riccati equations arise from the infinte dimensional
Riccati ODEs associated to the signed measure valued lifts.

Recent related literature: Cox et al. (’21), Schmidt et al. (’20), Benth and
Simonsen (’18)
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Questions and goals

Questions in the context of rough volatility

Problem statement

So far only mostly models for one asset have been considered (notable
exception by Rosenbaum and Tomas “From microscopic price dynamics to
multidimensional rough volatility models”).

What about the multivariate situation when we have d assets? Is there
empirical evidence for rough covariance processes?

How can we model rough (affine
Volterra type) processes in the cone
of positive semidefinite matrices Sd+,
in particular a rough Wishart
process? How can we exploit infinite
dimensional lifts?

Straightforward generalization is not possible due to the geometry of Sd+.

What is an analog of the rough Heston model?
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Questions and goals

Goals and structure of this talk

1 Empirical evidence for rough covariance

2 Review of classical (non rough) multivariate affine stochastic
covariance models

3 Introduction of (rough) affine Volterra-type proceses on Sd+
I Pure jump processes

I Volterra Wishart processes

I Multivariate (rough) Volterra-Heston type models
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Empirical evidence for rough covariance

Pathwise covariance estimation - real data

1 minute log-price data of S&P 500 and Russell 2000 over two years
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Empirical evidence for rough covariance

Reconstruction of the (co)variance path - real data

Different realized variance estimators suggest qualitatively similar results.

Local realized variance estimator, truncated for jumps, with a window ∆ of
one day versus a jump robust Fourier estimator
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Empirical evidence for rough covariance

Estimating roughness of the spot (co)variance

Use similarly as in Gatheral et al. (’18) a q-variation estimator of the

estimated covariance: m̂(∆, q) = 1
N

∑N
k=1 |V̂

ij
k∆ − V̂ ij

(k−1)∆|
q.

If 1
∆qHq

m̂(∆, q)→ bq in probability, then the trajectory t 7→ V ij
t lies in a

Besov space BHq
q,∞ ⇒ Hölder continuity with Hq − 1

q .

For different assets and estimators, the Hölder exponent H of the covariance
is considerably smaller than of the individual variances, around 0.05 in
contrast to 0.1.

Possible conclusions: the correlation process is rougher and/or effect of
asynchronous data ⇒ Rough covariance models cannot be rejected
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Empirical evidence for rough covariance

Insights on estimating roughness of the spot covariance

For the Fourier spot (co)variance estimator the convergence rate is of order

n
γ−1

2γ where n corresponds to the number of asset price observations and
γ−1
2γ ∈ (0, H

2H+1 ). The rougher t 7→
√

Vt , the lower the optimal convergence
rate.

The estimator noise makes it hard to identify the true roughness fully
non-parametrically on the basis of 1 minute data.

In the case with low Hurst parameter, it is difficult to separate signal from
noise in a non-parametric way.

For recent studies on different time scales see Garcin and Graselli (’20).

Assuming a more specific class of models, such as exponentials of fractional
OU processes as in Gatheral et al. (’18), allows to

I exploit further properties (e.g. autocorrelation)

I to reject models with higher Hurst parameters on the data basis.
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Classical multivariate affine stochastic covariance models

Classical multivariate affine stochastic covariance models

Log price of d assets: dPt = − 1
2 diag(Vt)dt +

√
V tdWt

Covariance process with values in Sd+ (Wishart process with jumps)

Vt = V0 + bt︸ ︷︷ ︸
g(t)

+

∫ t

0

β(Vs)ds +

∫ t

0

√
VsdBsQ + Q>dB>s

√
Vs + Nt

I B is a d × d matrix of Brownian motions and Wt =
√

1− ρ>ρB̃t + Btρ an Rd

valued Brownian motion correlated with B via ρ ∈ Rd

I N is a jump process with jump sizes in Sd+ of finite variation with compensator

M(v , dξ) = Tr(vµ(dξ))
‖ξ‖∧1

with µ an Sd+-valued finite measure

I β a linear operator satisfying admissibility conditions, Q ∈ Rd×d ,

I b � (d − 1)Q>Q (or b = nQ>Q if rk(V0) ≤ n + 1, d − 1 > n ∈ N)

Tractable multivariate models that exhibit stochastic correlation, but that
are not necessarily in line with empirical evidence shown above.
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(Rough) affine Volterra-type proceses on Sd+ Pure jump processes

Affine Volterra jump processes on Sd
+

Let

I g : R+ → Sd+ be a some deterministic function,

I K a (potentially fractional) kernel in L2(R+,Sd+) that can give rise to
different roughness regimes.

I N a pure jump process of finite variation with jump sizes in Sd+, whose

compensator is M(v , dξ) = Tr(vµ(dξ))
‖ξ‖∧1 with µ an Sd+-valued finite

measure on Sd+ satisfying
∫
‖ξ‖≥1

‖ξ‖2‖µ(dξ)‖ <∞.

Our first goal is to analyze Sd+-valued “intensities” of Hawkes type processes
of the form

Vt = g(t) +

∫ t

0

(K (t − s)Vs + VsK (t − s))ds

+

∫ t

0

K (t − s)dNs +

∫
dNsK (t − s).

The components of N can then be interpreted as up and downward jumps of
asset prices in spirit of Rosenbaum and Tomas (’19).
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(Rough) affine Volterra-type proceses on Sd+ Pure jump processes

Projections of processes with values in Sd
+-valued measures

We analyze these processes by means of infinite dimensional lifts and generalized
Feller processes.

Theorem (C. and Teichmann (’19))

Let K , g ∈ Sd+ be such that K (t) =
∫∞

0
e−xtν(dx) and

g(t) =
∫∞

0
e−xtλ0(dx) with ν, λ0 being S+

d valued measures on R+

satisfying certain technical conditions (ν can give rise to fractional kernels).

Then the above Volterra jump process is the projection, namely the total mass
Vt =

∫∞
0
λ(dx), of an affine generalized Feller process λ which takes values in the

space of Sd+-valued measures on R+ of the form

dλt(dx) =

(
−xλt(dx) + ν(dx)

(∫ ∞
0

λt(dx)

)
+

(∫ ∞
0

λt(dx)

)
ν(dx)

)
dt

+ ν(dx)dNt + dNtν(dx), λ0 = λ0.
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(Rough) affine Volterra-type proceses on Sd+ Pure jump processes

Laplace transform

Theorem (C. and Teichmann (’19))

Moreover, the Laplace transform of V is given by

E[exp(Tr(uVt))] = exp

(
Tr(g(t)u) +

∫ t

0

Tr(g(t − s)R(ψ(s))ds

)
, u ∈ Sd−,

where

g(t) =

∫ ∞
0

e−xtλ0(dx), R(u) = u +

∫
Sd+

(eTr(uξ) − 1)
µ(dξ)

1 ∧ ‖ξ‖

and ψ solves the matrix Volterra equation

ψ(t) = uK (t) +

∫ t

0

R(ψ(s))K (t − s)ds.

Hence the solution of the stochastic Volterra equation is unique in law.

Christa Cuchiero (University of Vienna) Modeling rough covariance processes February 2022 17 / 23



(Rough) affine Volterra-type proceses on Sd+ Volterra Wishart processes

Towards Volterra type Wishart processes

In the presence of a Brownian component, things become more involved.

In contrast to the one dimensional case, convergence results of the previous
Hawkes type process’ intensities cannot be obtained.

For the classical Wishart process we have a drift conditon that grows linearly
with the dimension d . ⇒ Crucial obstruction to infinite dimensional
processes.

If we restrict the process to take values in rank n < d submanifolds of Sd+,
the drift condition depends only on n (and the diffusion matrix).

The latter corresponds essentially to a square of a n × d matrix of Brownian
motions.

Build matrix squares of Volterra OU processes taking values in Rn×d

Xt = g(t) +

∫ t

0

dWsK (t − s)

with K (t) =
∫∞

0
e−xtν(dx) ∈ Sd and W an n × d matrix of BMs.
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(Rough) affine Volterra-type proceses on Sd+ Volterra Wishart processes

Affine structure via infinite dimensional lifts?

Question

Is X>t Xt a projection of an infinite dimensional affine process?

Lift Xt to an infinite dimensional stochastic process taking values in Rn×d

-valued measures on R+ denoted by Y ∗(Rn×d)

dγt(dx) = −xγt(dx)dt + dWtν(dx).

Define as squared Gaussian process

λt(dx1, dx2) =: γt(dx1)>γt(dx2) =: γt⊗̂γt ,

which takes values in Ê :=
{
γ⊗̂γ ∈ Y ∗(Rn×d)⊗̂Y ∗(Rn×d)

}
i.e., finite

Sd+-valued, rank n, product measures on R+ × R+.

Take as pairing between elements in Ê and corresponding functions
y1⊗̂y2 ∈ Y (Rn×d)⊗̂Y (Rn×d)

〈y1⊗̂y2, γ1⊗̂γ2〉 = Tr

(∫ ∞
0

y>1 (x1)y2(x2)γ>1 (dx1)γ2(dx2)

)
.
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(Rough) affine Volterra-type proceses on Sd+ Volterra Wishart processes

Infinite dimensional Wishart processes

Theorem (C. and Teichmann (’19))

The process λ is Markovian on Ê . The corresponding semigroup is a generalized
Feller semigroup. Moreover, for y ∈ Y (Rn×d)

Eλ0

[
exp

(
−〈y⊗̂y , λt〉

)]
= exp(−ϕt − 〈ψt , λ0〉),

where ψ and ϕ satisfy the following matrix-valued Riccati PDEs namely
ψ0 = y⊗̂y and ∂tψt = R(ψt) in the mild sense with R : Ê∗ → Ê∗ given by

R(y⊗̂y)(x1, x2) = −(x1 + x2)y(x1)⊗̂y(x2)

− 2

∫ ∞
0

∫ ∞
0

y(dx1)⊗̂y(dx)ν⊗̂ν(dx , dy)y(dy)⊗̂y(dx2)

and ϕ0 = 0 and ∂tϕt = F (ψt) with F : Ê∗ → R given by

F (y⊗̂y) = n〈y⊗̂y , ν⊗̂ν〉.
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(Rough) affine Volterra-type proceses on Sd+ Volterra Wishart processes

Volterra Wishart process

The Volterra Wishart process defined as

Vt = X>t Xt =

∫ ∞
0

∫ ∞
0

λ(dx1, dx2)

is thus a projection of an infinite dimensional affine process. Its Laplace
transform can be computed by setting ψ0 = Id . (c.f. also Abi Jaber (’20))

Its dynamics can be expressed as follows

Vt = g(t)>g(t) + n

∫ t

0

K (t − s)K (t − s)ds

+

∫ t

0

K (t − s)dW>
s E[Xt |Fs ]ds +

∫ t

0

E[Xt |Fs ]>dWsK (t − s),

The marginals of V are Wishart distributed as they are squares of Gaussians.

It is not of standard Volterra form as it depends on (E[Xt |Fs ]){s≤t}.

Via a Brownian field representation it can however be expressed as a path
functional of (Vs){s≤t} but not only on the state Vt .
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(Rough) affine Volterra-type proceses on Sd+ Multivariate (rough) Volterra-Heston type models

Multivariate (rough) Volterra-Heston type models

Log-price process of d assets:

dPt = −1

2
diag(Vt)dt + X>t dW̃t ,

where W̃ is an n-dimensional Brownian motion given by

W̃t =
√

1− ρ>ρB̃t + Wtρ with ρ ∈ Rd and B̃t an n-dimensional
independent Brownian motion.

Theorem (C. and Teichmann (’19))

The process (λt ,Pt) is a Markov process on (Ê ,Rd). Moreover, it is affine in the
sense that for (y , v) ∈ (Y (Rn×d),Rd)

Eλ0,P0

[
exp

(
−〈y⊗̂y , λt〉+ 〈iv ,Pt〉Rd

)]
= exp(−ϕt − 〈ψt , λ0〉+ 〈iv ,P0〉Rd ),

where ψ satisfies an Riccati differential equation in the space of matrix valued
functions and ϕt = n

∫ t

0
〈ψs , ν⊗̂ν〉ds.
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(Rough) affine Volterra-type proceses on Sd+ Multivariate (rough) Volterra-Heston type models

Conclusions

Review of one-dimensional rough volatility models

Some empirical evidence for rough covariance

Sd+-valued affine jump processes that can serve similarly well as
covariance models in particular in view of Hawkes processes and
microstructural foundations

Construction of an infinite dimensional Wishart processes and (rough)
Volterra Wishart processes

Multivariate rough Heston model

Future work

I True microstructural foundations for these models

I Multivariate quadratic Hawkes models - infinite dimensional lifts

Thank you for your attention!
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