Modeling rough covariance processes

Christa Cuchiero (based on joint work with Josef Teichmann)

Department of Statistics and Operations Reasearch University of Vienna

From Microscopic Models to Rough Macroscopic Models

February 2, 2022

Rough volatility

• Revolutionary modeling paradigm initiated by Gatheral, Jaisson and Rosenbaum ('18) in the already seminal paper

"Volatility is rough"

• Literature: https://sites.google.com/site/roughvol/home

Rough volatility

• Revolutionary modeling paradigm initiated by Gatheral, Jaisson and Rosenbaum ('18) in the already seminal paper

"Volatility is rough"

- Literature: https://sites.google.com/site/roughvol/home
- Classical stochastic volatility: the price of one asset is given by

 $dS_t = S_t \sqrt{V_t} dW_t,$

where the spot variance $(V_t)_{t\geq 0}$ is a semimartingale.

Rough volatility

• Revolutionary modeling paradigm initiated by Gatheral, Jaisson and Rosenbaum ('18) in the already seminal paper

"Volatility is rough"

- Literature: https://sites.google.com/site/roughvol/home
- Classical stochastic volatility: the price of one asset is given by

$$dS_t = S_t \sqrt{V_t} dW_t,$$

where the spot variance $(V_t)_{t\geq 0}$ is a semimartingale.

- Rough volatility: $(V_t)_{t\geq 0}$ is no longer a semimartingale, but a process whose trajectories can be rougher than the ones of Brownian motion (e.g. fractional Brownian motion with a low Hurst parameter ≈ 0.1).
- Empirical evidence comes from both
 - time series data,
 - option data.

Modeling with stochastic Volterra equations

Microstructural foundations of rough volatility (El Euch et al.) suggest stochastic Volterra equations with fractional kernels on \mathbb{R}_+ as models for the spot variance.

Stochastic Volterra equation

$$V_t = g(t) + \int_{[0,t)} K(t-s) dZ_s, \qquad (SVE)$$

where Z is an Itô semimartingale with differential characteristics

drift b(V), diffusions matrix a(V), jump compensator $\nu(V, d\xi)$.

The initial conditon g is deterministic and the kernel $K \in L^2_{loc}$ (including singular fractional kernels $K(t) \approx t^{\alpha}$, $\alpha \in (-\frac{1}{2}, 0)$).

Modeling with stochastic Volterra equations

Microstructural foundations of rough volatility (El Euch et al.) suggest stochastic Volterra equations with fractional kernels on \mathbb{R}_+ as models for the spot variance.

Stochastic Volterra equation

$$V_t = g(t) + \int_{[0,t)} K(t-s) dZ_s,$$
 (SVE)

where Z is an Itô semimartingale with differential characteristics drift b(V), diffusions matrix a(V), jump compensator $\nu(V, d\xi)$.

The initial conditon g is deterministic and the kernel $K \in L^2_{loc}$ (including singular fractional kernels $K(t) \approx t^{\alpha}$, $\alpha \in (-\frac{1}{2}, 0)$).

Challenges

- V is not (one-dimensional) Markovian.
- V is not a semimartingale in general, in particular if K is a fractional kernel.

Christa Cuchiero (University of Vienna)

• The difference of certain rescaled Hawkes processes modeling the market order flow converges to a rough Heston model (see El Euch et al. ('18))

- The difference of certain rescaled Hawkes processes modeling the market order flow converges to a rough Heston model (see El Euch et al. ('18))
- A (one-dimensional) Hawkes process N is a pure jump process that jumps by 1 with intensity

$$\lambda_t = g(t) + \int_0^t K(t-s) dN_s.$$

- The difference of certain rescaled Hawkes processes modeling the market order flow converges to a rough Heston model (see El Euch et al. ('18))
- A (one-dimensional) Hawkes process N is a pure jump process that jumps by 1 with intensity

$$\lambda_t = g(t) + \int_0^t K(t-s) dN_s.$$

• Scaling λ and choosing g and K appropriately, the intensity λ converges in the long run to a rough Cox Ingersoll Ross process

$$V_t = g(t) + \int_0^t rac{(t-s)^lpha}{\Gamma(lpha)} \kappa(heta - V_s) ds + \int_0^t rac{(t-s)^lpha}{\Gamma(lpha)} \sqrt{V_s} dW_s,$$

where $\alpha \in (-\frac{1}{2}, 0)$ and W a Brownian motion. Together with the log price P, this yields the rough Heston model.

- The difference of certain rescaled Hawkes processes modeling the market order flow converges to a rough Heston model (see El Euch et al. ('18))
- A (one-dimensional) Hawkes process N is a pure jump process that jumps by 1 with intensity

$$\lambda_t = g(t) + \int_0^t K(t-s) dN_s.$$

• Scaling λ and choosing g and K appropriately, the intensity λ converges in the long run to a rough Cox Ingersoll Ross process

$$V_t = g(t) + \int_0^t rac{(t-s)^lpha}{\Gamma(lpha)} \kappa(heta-V_s) ds + \int_0^t rac{(t-s)^lpha}{\Gamma(lpha)} \sqrt{V_s} dW_s,$$

where $\alpha \in (-\frac{1}{2}, 0)$ and W a Brownian motion. Together with the log price P, this yields the rough Heston model.

• For further convergence results of so-called "affine forward intensity models" to rough models see Gatheral & Keller-Ressel ('18).

Affine Volterra processes on \mathbb{R}_+

• Both processes are instances of affine Volterra processes on \mathbb{R}_+ .

Affine Volterra processes on \mathbb{R}_+

- Both processes are instances of affine Volterra processes on \mathbb{R}_+ .
- Affine (or here rather linear) Markov processes are of the form

$$V_{t} = V_{0} + \int_{0}^{t} \beta \mathbf{V}_{s} ds + \int_{0}^{t} \sigma \sqrt{\mathbf{V}_{s}} dB_{s} + \int_{0}^{t} \int_{\mathbb{R}_{+}} \xi(\mu^{X}(d\xi, ds) - \mathbf{V}_{s}\mu(d\xi) ds).$$

- *B* is a Brownian motion and μ^X the random measure of the jumps;
- $\sigma, \beta \in \mathbb{R}$ and μ a Lévy measure exhibiting a second moment;

Affine Volterra processes on \mathbb{R}_+

- Both processes are instances of affine Volterra processes on \mathbb{R}_+ .
- Affine (or here rather linear) Volterra processes are of the form

$$V_t = g(t) + \int_0^t K(t-s)\beta V_s ds + \int_0^t K(t-s)\sigma \sqrt{V_s} dB_s$$
$$+ \int_0^t K(t-s) \int_{\mathbb{R}_+} \xi(\mu^X(d\xi, ds) - V_s\mu(d\xi)ds).$$

- *B* is a Brownian motion and μ^X the random measure of the jumps;
- ▶ $\sigma, \beta \in \mathbb{R}$ and μ a Lévy measure exhibiting a second moment;
- K is a kernel in $L^2_{loc}(\mathbb{R}_+,\mathbb{R}_+)$
- $t \mapsto g(t)$ a deterministic function satisfying certain conditions such that V is nonnegative for all times.
- For the intensity of the Hawkes process the parameters are $\sigma=$ 0, $\beta=1$ and $\mu=\delta_1.$

For standard finite dimensional linear Markov processes (analgously affine) it holds:

Theorem

The Fourier-Laplace transform of the affine Markov process V is

 $\mathbb{E}\left[\exp(uV_t)\right] = \exp(V_0\psi(t)),$

where ψ is a solution of a generalized Riccati differential equation

 $\partial_t \psi(t) = \mathcal{R}(\psi(t)), \quad \psi_0 = u.$

where $\mathcal{R}(u) = \beta u + \frac{1}{2}\sigma^2 u^2 + \int (e^{u\xi} - 1 - u\xi)\mu(d\xi).$

For standard finite dimensional linear Markov processes (analgously affine) it holds:

Theorem

The Fourier-Laplace transform of the affine Markov process V is

$$\mathbb{E}\left[\exp(uV_t)\right] = \exp(V_0u + \int_0^t V_0\mathcal{R}(\psi(s))ds),$$

where ψ is a solution of a generalized Riccati differential equation

$$\psi(t) = u + \int_0^t \mathcal{R}(\psi(s)) ds, \quad t \ge 0.$$

where $\mathcal{R}(u) = \beta u + \frac{1}{2}\sigma^2 u^2 + \int (e^{u\xi} - 1 - u\xi)\mu(d\xi).$

For linear Volterra processes (analgously affine) it holds:

Theorem (C. and Teichmann ('20))

Affine Volterra processes are projections of infinite dimensional affine processes on appropriate function or measure spaces.

For linear Volterra processes (analgously affine) it holds:

Theorem (C. and Teichmann ('20))

Affine Volterra processes are projections of infinite dimensional affine processes on appropriate function or measure spaces. The Fourier-Laplace transform of V is

$$\mathbb{E}\left[\exp(uV_t)\right] = \exp(g(t)u + \int_0^t g(t-s)\mathcal{R}(\psi(s))ds),$$

where ψ is a solution of a Riccati Volterra equation

$$\psi(t) = \mathcal{K}(t)u + \int_0^t \mathcal{K}(t-s)\mathcal{R}(\psi(s))ds, \quad t > 0.$$

where $\mathcal{R}(u) = \beta u + \frac{1}{2}\sigma^2 u^2 + \int (e^{u\xi} - 1 - u\xi)\mu(d\xi).$

For linear Volterra processes (analgously affine) it holds:

Theorem (C. and Teichmann ('20))

Affine Volterra processes are projections of infinite dimensional affine processes on appropriate function or measure spaces. The Fourier-Laplace transform of V is

$$\mathbb{E}\left[\exp(uV_t)\right] = \exp(g(t)u + \int_0^t g(t-s)\mathcal{R}(\psi(s))ds),$$

where ψ is a solution of a Riccati Volterra equation

$$\psi(t) = K(t)u + \int_0^t K(t-s)\mathcal{R}(\psi(s))ds, \quad t>0.$$

where $\mathcal{R}(u) = \beta u + \frac{1}{2}\sigma^2 u^2 + \int (e^{u\xi} - 1 - u\xi)\mu(d\xi).$

Remark: El Euch and Rosenbaum ('17) were the first to discover this form of the Fourier-Laplace transform in the rough Heston case, Abi Jaber et al. ('17) then for continuous affine Volterra processes.

Christa Cuchiero (University of Vienna) Modeling rough covaria

Infinite dimensional affine processes in a nutshell

- Affine processes qualify as universal model class.
- Certain nonnegative measure-valued jumps diffusion (superprocesses) are well-known examples:
 - Dawson Watanabe process and branching Brownian motion.
 - The Riccati equations correspond here to certain non-linear PDEs, (e.g. the logarithm of the KPP equation).
 - ► The set of nonnegative measures on compacts is locally compact. ⇒ standard Feller and martingale problem theory can be applied.

Infinite dimensional affine processes in a nutshell

- Affine processes qualify as universal model class.
- Certain nonnegative measure-valued jumps diffusion (superprocesses) are well-known examples:
 - Dawson Watanabe process and branching Brownian motion.
 - The Riccati equations correspond here to certain non-linear PDEs, (e.g. the logarithm of the KPP equation).
 - ► The set of nonnegative measures on compacts is locally compact. ⇒ standard Feller and martingale problem theory can be applied.
- Our work:
 - ► We consider signed measure-valued lifts of affine Volterra processes. Here the state space is no longer locally compact ⇒ Generalized Feller theory
 - ► The Volterra Riccati equations arise from the infinite dimensional Riccati ODEs associated to the signed measure valued lifts.

Infinite dimensional affine processes in a nutshell

- Affine processes qualify as universal model class.
- Certain nonnegative measure-valued jumps diffusion (superprocesses) are well-known examples:
 - Dawson Watanabe process and branching Brownian motion.
 - The Riccati equations correspond here to certain non-linear PDEs, (e.g. the logarithm of the KPP equation).
 - ► The set of nonnegative measures on compacts is locally compact. ⇒ standard Feller and martingale problem theory can be applied.
- Our work:
 - ► We consider signed measure-valued lifts of affine Volterra processes. Here the state space is no longer locally compact ⇒ Generalized Feller theory
 - ► The Volterra Riccati equations arise from the infinite dimensional Riccati ODEs associated to the signed measure valued lifts.
- Recent related literature: Cox et al. ('21), Schmidt et al. ('20), Benth and Simonsen ('18)

Problem statement

• So far only mostly models for one asset have been considered (notable exception by Rosenbaum and Tomas "From microscopic price dynamics to multidimensional rough volatility models").

Problem statement

- So far only mostly models for one asset have been considered (notable exception by Rosenbaum and Tomas "From microscopic price dynamics to multidimensional rough volatility models").
- What about the multivariate situation when we have *d* assets? Is there empirical evidence for rough covariance processes?

Problem statement

- So far only mostly models for one asset have been considered (notable exception by Rosenbaum and Tomas "From microscopic price dynamics to multidimensional rough volatility models").
- What about the multivariate situation when we have *d* assets? Is there empirical evidence for rough covariance processes?
- How can we model rough (affine Volterra type) processes in the cone of positive semidefinite matrices S^d₊, in particular a rough Wishart process? How can we exploit infinite dimensional lifts?

Problem statement

- So far only mostly models for one asset have been considered (notable exception by Rosenbaum and Tomas "From microscopic price dynamics to multidimensional rough volatility models").
- What about the multivariate situation when we have *d* assets? Is there empirical evidence for rough covariance processes?
- How can we model rough (affine Volterra type) processes in the cone of positive semidefinite matrices S^d₊, in particular a rough Wishart process? How can we exploit infinite dimensional lifts?

• Straightforward generalization is not possible due to the geometry of \mathbb{S}_{+}^{d} .

Problem statement

- So far only mostly models for one asset have been considered (notable exception by Rosenbaum and Tomas "From microscopic price dynamics to multidimensional rough volatility models").
- What about the multivariate situation when we have *d* assets? Is there empirical evidence for rough covariance processes?
- How can we model rough (affine Volterra type) processes in the cone of positive semidefinite matrices S^d₊, in particular a rough Wishart process? How can we exploit infinite dimensional lifts?

- Straightforward generalization is not possible due to the geometry of \mathbb{S}_{+}^{d} .
- What is an analog of the rough Heston model?

Goals and structure of this talk

- Empirical evidence for rough covariance
- Review of classical (non rough) multivariate affine stochastic covariance models
- **③** Introduction of (rough) affine Volterra-type processes on \mathbb{S}^d_+
 - Pure jump processes
 - Volterra Wishart processes
 - Multivariate (rough) Volterra-Heston type models

Pathwise covariance estimation - real data

• 1 minute log-price data of S&P 500 and Russell 2000 over two years

Reconstruction of the (co)variance path - real data

- Different realized variance estimators suggest qualitatively similar results.
- Local realized variance estimator, truncated for jumps, with a window Δ of one day versus a jump robust Fourier estimator

Estimating roughness of the spot (co)variance

- Use similarly as in Gatheral et al. ('18) a *q*-variation estimator of the estimated covariance: $\widehat{m}(\Delta, q) = \frac{1}{N} \sum_{k=1}^{N} |\widehat{V}_{k\Delta}^{ij} \widehat{V}_{(k-1)\Delta}^{ij}|^{q}$.
- If $\frac{1}{\Delta^{dH_q}}\widehat{m}(\Delta,q) \to b_q$ in probability, then the trajectory $t \mapsto V_t^{ij}$ lies in a Besov space $\mathcal{B}_{q,\infty}^{H_q} \Rightarrow$ Hölder continuity with $H_q \frac{1}{q}$.
- For different assets and estimators, the Hölder exponent *H* of the covariance is considerably smaller than of the individual variances, around 0.05 in contrast to 0.1.

 Possible conclusions: the correlation process is rougher and/or effect of asynchronous data ⇒ Rough covariance models cannot be rejected

Christa Cuchiero (University of Vienna)

Modeling rough covariance processes

Insights on estimating roughness of the spot covariance

- For the Fourier spot (co)variance estimator the convergence rate is of order $n^{\frac{\gamma-1}{2\gamma}}$ where *n* corresponds to the number of asset price observations and $\frac{\gamma-1}{2\gamma} \in (0, \frac{H}{2H+1})$. The rougher $t \mapsto \sqrt{V_t}$, the lower the optimal convergence rate.
- The estimator noise makes it hard to identify the true roughness fully non-parametrically on the basis of 1 minute data.
- In the case with low Hurst parameter, it is difficult to separate signal from noise in a non-parametric way.
- For recent studies on different time scales see Garcin and Graselli ('20).

Insights on estimating roughness of the spot covariance

- For the Fourier spot (co)variance estimator the convergence rate is of order $n^{\frac{\gamma-1}{2\gamma}}$ where *n* corresponds to the number of asset price observations and $\frac{\gamma-1}{2\gamma} \in (0, \frac{H}{2H+1})$. The rougher $t \mapsto \sqrt{V_t}$, the lower the optimal convergence rate.
- The estimator noise makes it hard to identify the true roughness fully non-parametrically on the basis of 1 minute data.
- In the case with low Hurst parameter, it is difficult to separate signal from noise in a non-parametric way.
- For recent studies on different time scales see Garcin and Graselli ('20).
- Assuming a more specific class of models, such as exponentials of fractional OU processes as in Gatheral et al. ('18), allows to
 - exploit further properties (e.g. autocorrelation)
 - ► to reject models with higher Hurst parameters on the data basis.

Classical multivariate affine stochastic covariance models

- Log price of *d* assets: $dP_t = -\frac{1}{2} \text{diag}(V_t) dt + \sqrt{V_t} dW_t$
- Covariance process with values in \mathbb{S}^d_+ (Wishart process with jumps)

$$V_t = \underbrace{V_0 + bt}_{g(t)} + \int_0^t \beta(V_s) ds + \int_0^t \sqrt{V_s} dB_s Q + Q^\top dB_s^\top \sqrt{V_s} + N_t$$

- ▶ *B* is a *d* × *d* matrix of Brownian motions and $W_t = \sqrt{1 \rho^{\top}\rho}\tilde{B}_t + B_t\rho$ an \mathbb{R}^d valued Brownian motion correlated with *B* via $\rho \in \mathbb{R}^d$
- ▶ *N* is a jump process with jump sizes in \mathbb{S}^d_+ of finite variation with compensator $M(v, d\xi) = \frac{\text{Tr}(v\mu(d\xi))}{\|\xi\| \wedge 1}$ with μ an \mathbb{S}^d_+ -valued finite measure
- β a linear operator satisfying admissibility conditions, $Q \in \mathbb{R}^{d \times d}$,
- ▶ $b \succeq (d-1)Q^\top Q$ (or $b = nQ^\top Q$ if $rk(V_0) \le n+1$, $d-1 > n \in \mathbb{N}$)

Classical multivariate affine stochastic covariance models

- Log price of d assets: $dP_t = -\frac{1}{2} \text{diag}(V_t) dt + \sqrt{V_t} dW_t$
- Covariance process with values in \mathbb{S}^d_+ (Wishart process with jumps)

$$V_t = \underbrace{V_0 + bt}_{g(t)} + \int_0^t \beta(V_s) ds + \int_0^t \sqrt{V_s} dB_s Q + Q^\top dB_s^\top \sqrt{V_s} + N_t$$

- ▶ *B* is a *d* × *d* matrix of Brownian motions and $W_t = \sqrt{1 \rho^{\top}\rho}\tilde{B}_t + B_t\rho$ an \mathbb{R}^d valued Brownian motion correlated with *B* via $\rho \in \mathbb{R}^d$
- ▶ *N* is a jump process with jump sizes in \mathbb{S}^d_+ of finite variation with compensator $M(v, d\xi) = \frac{\text{Tr}(v\mu(d\xi))}{\|\xi\| \wedge 1}$ with μ an \mathbb{S}^d_+ -valued finite measure
- ▶ β a linear operator satisfying admissibility conditions, $Q \in \mathbb{R}^{d \times d}$,
- ▶ $b \succeq (d-1)Q^\top Q$ (or $b = nQ^\top Q$ if $rk(V_0) \le n+1$, $d-1 > n \in \mathbb{N}$)
- Tractable multivariate models that exhibit stochastic correlation, but that are not necessarily in line with empirical evidence shown above.

Pure jump processes

Affine Volterra jump processes on \mathbb{S}^d_{\perp}

- Let
 - $g: \mathbb{R}_+ \to \mathbb{S}^d_+$ be a some deterministic function,
 - K a (potentially fractional) kernel in $L^2(\mathbb{R}_+, \mathbb{S}^d_+)$ that can give rise to different roughness regimes.
 - N a pure jump process of finite variation with jump sizes in \mathbb{S}^d_+ , whose compensator is $M(v, d\xi) = \frac{\text{Tr}(v\mu(d\xi))}{\|\xi\| \wedge 1}$ with μ an \mathbb{S}^d_+ -valued finite measure on \mathbb{S}^d_+ satisfying $\int_{\|\xi\|>1} \|\xi\|^2 \|\mu(d\xi)\| < \infty$.
- Our first goal is to analyze \mathbb{S}^d_+ -valued "intensities" of Hawkes type processes of the form

$$egin{aligned} V_t &= g(t) + \int_0^t (K(t-s)V_s + V_sK(t-s))ds \ &+ \int_0^t K(t-s)dN_s + \int dN_sK(t-s). \end{aligned}$$

• The components of N can then be interpreted as up and downward jumps of asset prices in spirit of Rosenbaum and Tomas ('19).

Projections of processes with values in \mathbb{S}^d_+ -valued measures

We analyze these processes by means of infinite dimensional lifts and generalized Feller processes.

Theorem (C. and Teichmann ('19))

• Let $K, g \in \mathbb{S}^d_+$ be such that $K(t) = \int_0^\infty e^{-xt}\nu(dx)$ and $g(t) = \int_0^\infty e^{-xt}\lambda_0(dx)$ with ν , λ_0 being \mathbb{S}^d_+ valued measures on \mathbb{R}_+ satisfying certain technical conditions (ν can give rise to fractional kernels).

Projections of processes with values in \mathbb{S}^d_+ -valued measures

We analyze these processes by means of infinite dimensional lifts and generalized Feller processes.

Theorem (C. and Teichmann ('19))

• Let $K, g \in \mathbb{S}_{+}^{d}$ be such that $K(t) = \int_{0}^{\infty} e^{-xt} \nu(dx)$ and $g(t) = \int_{0}^{\infty} e^{-xt} \lambda_{0}(dx)$ with ν , λ_{0} being \mathbb{S}_{d}^{+} valued measures on \mathbb{R}_{+} satisfying certain technical conditions (ν can give rise to fractional kernels).

Then the above Volterra jump process is the projection, namely the total mass $V_t = \int_0^\infty \lambda(dx)$, of an affine generalized Feller process λ which takes values in the space of \mathbb{S}^d_+ -valued measures on \mathbb{R}_+ of the form

$$d\lambda_t(dx) = \left(-x\lambda_t(dx) + \nu(dx)\left(\int_0^\infty \lambda_t(dx)\right) + \left(\int_0^\infty \lambda_t(dx)\right)\nu(dx)\right)dt + \nu(dx)dN_t + dN_t\nu(dx), \quad \lambda_0 = \lambda_0.$$

Laplace transform

Theorem (C. and Teichmann ('19))

Moreover, the Laplace transform of V is given by

$$\mathbb{E}[\exp(\mathsf{Tr}(uV_t))] = \exp\left(\mathsf{Tr}(g(t)u) + \int_0^t \mathsf{Tr}(g(t-s)\mathcal{R}(\psi(s))ds\right), \quad u \in \mathbb{S}_-^d,$$

where

$$g(t) = \int_0^\infty e^{-xt} \lambda_0(dx), \quad \mathcal{R}(u) = u + \int_{\mathbb{S}^d_+} (e^{Tr(u\xi)} - 1) \frac{\mu(d\xi)}{1 \wedge \|\xi\|}$$

and ψ solves the matrix Volterra equation

$$\psi(t) = uK(t) + \int_0^t \mathcal{R}(\psi(s))K(t-s)ds.$$

Hence the solution of the stochastic Volterra equation is unique in law.

Towards Volterra type Wishart processes

- In the presence of a Brownian component, things become more involved.
- In contrast to the one dimensional case, convergence results of the previous Hawkes type process' intensities cannot be obtained.

Towards Volterra type Wishart processes

- In the presence of a Brownian component, things become more involved.
- In contrast to the one dimensional case, convergence results of the previous Hawkes type process' intensities cannot be obtained.
- For the classical Wishart process we have a drift conditon that grows linearly with the dimension d. ⇒ Crucial obstruction to infinite dimensional processes.
- If we restrict the process to take values in rank n < d submanifolds of S^d₊, the drift condition depends only on n (and the diffusion matrix).
- The latter corresponds essentially to a square of a $n \times d$ matrix of Brownian motions.

Towards Volterra type Wishart processes

- In the presence of a Brownian component, things become more involved.
- In contrast to the one dimensional case, convergence results of the previous Hawkes type process' intensities cannot be obtained.
- For the classical Wishart process we have a drift conditon that grows linearly with the dimension d. ⇒ Crucial obstruction to infinite dimensional processes.
- If we restrict the process to take values in rank n < d submanifolds of S^d₊, the drift condition depends only on n (and the diffusion matrix).
- The latter corresponds essentially to a square of a $n \times d$ matrix of Brownian motions.
- Build matrix squares of Volterra OU processes taking values in $\mathbb{R}^{n \times d}$

$$X_t = g(t) + \int_0^t dW_s K(t-s)$$

with $K(t) = \int_0^\infty e^{-xt} \nu(dx) \in \mathbb{S}^d$ and W an $n \times d$ matrix of BMs.

Question

• Is $X_t^{\top} X_t$ a projection of an infinite dimensional affine process?

Question

- Is $X_t^{\top} X_t$ a projection of an infinite dimensional affine process?
- Lift X_t to an infinite dimensional stochastic process taking values in ℝ^{n×d} -valued measures on ℝ₊ denoted by Y^{*}(ℝ^{n×d})

 $d\gamma_t(dx) = -x\gamma_t(dx)dt + dW_t\nu(dx).$

Question

- Is $X_t^{\top} X_t$ a projection of an infinite dimensional affine process?
- Lift X_t to an infinite dimensional stochastic process taking values in ℝ^{n×d}
 -valued measures on ℝ₊ denoted by Y^{*}(ℝ^{n×d})

 $d\gamma_t(dx) = -x\gamma_t(dx)dt + dW_t\nu(dx).$

• Define as squared Gaussian process

 $\lambda_t(dx_1, dx_2) =: \gamma_t(dx_1)^\top \gamma_t(dx_2) =: \gamma_t \widehat{\otimes} \gamma_t,$

which takes values in $\widehat{\mathcal{E}} := \{\gamma \widehat{\otimes} \gamma \in Y^*(\mathbb{R}^{n \times d}) \widehat{\otimes} Y^*(\mathbb{R}^{n \times d})\}$ i.e., finite \mathbb{S}^d_+ -valued, rank *n*, product measures on $\mathbb{R}_+ \times \mathbb{R}_+$.

Question

- Is $X_t^{\top} X_t$ a projection of an infinite dimensional affine process?
- Lift X_t to an infinite dimensional stochastic process taking values in ℝ^{n×d} -valued measures on ℝ₊ denoted by Y^{*}(ℝ^{n×d})

 $d\gamma_t(dx) = -x\gamma_t(dx)dt + dW_t\nu(dx).$

• Define as squared Gaussian process

 $\lambda_t(dx_1, dx_2) \coloneqq \gamma_t(dx_1)^\top \gamma_t(dx_2) \coloneqq \gamma_t \widehat{\otimes} \gamma_t,$

which takes values in $\widehat{\mathcal{E}} := \{\gamma \widehat{\otimes} \gamma \in Y^*(\mathbb{R}^{n \times d}) \widehat{\otimes} Y^*(\mathbb{R}^{n \times d})\}$ i.e., finite \mathbb{S}^d_+ -valued, rank *n*, product measures on $\mathbb{R}_+ \times \mathbb{R}_+$.

• Take as pairing between elements in $\widehat{\mathcal{E}}$ and corresponding functions $y_1 \widehat{\otimes} y_2 \in Y(\mathbb{R}^{n \times d}) \widehat{\otimes} Y(\mathbb{R}^{n \times d})$

$$\langle y_1 \widehat{\otimes} y_2, \gamma_1 \widehat{\otimes} \gamma_2 \rangle = \mathsf{Tr}\left(\int_0^\infty y_1^\top(x_1)y_2(x_2)\gamma_1^\top(dx_1)\gamma_2(dx_2)\right)$$

Infinite dimensional Wishart processes

Theorem (C. and Teichmann ('19))

The process λ is Markovian on $\widehat{\mathcal{E}}$. The corresponding semigroup is a generalized Feller semigroup. Moreover, for $y \in Y(\mathbb{R}^{n \times d})$

$$\mathbb{E}_{\lambda_0}\left[\exp\left(-\langle y\widehat{\otimes}y,\lambda_t\rangle\right)\right] = \exp(-\varphi_t - \langle \psi_t,\lambda_0\rangle),$$

where ψ and φ satisfy the following matrix-valued Riccati PDEs namely $\psi_0 = y \widehat{\otimes} y$ and $\partial_t \psi_t = R(\psi_t)$ in the mild sense with $R : \widehat{\mathcal{E}}_* \to \widehat{\mathcal{E}}_*$ given by

$$R(y\widehat{\otimes}y)(x_1, x_2) = -(x_1 + x_2)y(x_1)\widehat{\otimes}y(x_2) - 2\int_0^\infty \int_0^\infty y(dx_1)\widehat{\otimes}y(dx)\nu\widehat{\otimes}\nu(dx, dy)y(dy)\widehat{\otimes}y(dx_2)$$

and $\varphi_0 = 0$ and $\partial_t \varphi_t = F(\psi_t)$ with $F : \widehat{\mathcal{E}}_* \to \mathbb{R}$ given by

$$F(y\widehat{\otimes}y) = n\langle y\widehat{\otimes}y, \nu\widehat{\otimes}\nu\rangle.$$

Volterra Wishart process

• The Volterra Wishart process defined as

$$V_t = X_t^{\top} X_t = \int_0^\infty \int_0^\infty \lambda(dx_1, dx_2)$$

is thus a projection of an infinite dimensional affine process. Its Laplace transform can be computed by setting $\psi_0 = Id$. (c.f. also Abi Jaber ('20))

• Its dynamics can be expressed as follows

$$V_t = g(t)^{\top} g(t) + n \int_0^t \mathcal{K}(t-s) \mathcal{K}(t-s) ds + \int_0^t \mathcal{K}(t-s) dW_s^{\top} \mathbb{E}[X_t | \mathcal{F}_s] ds + \int_0^t \mathbb{E}[X_t | \mathcal{F}_s]^{\top} dW_s \mathcal{K}(t-s),$$

- The marginals of V are Wishart distributed as they are squares of Gaussians.
- It is not of standard Volterra form as it depends on $(\mathbb{E}[X_t|\mathcal{F}_s])_{\{s \leq t\}}$.
- Via a Brownian field representation it can however be expressed as a path functional of (V_s)_{s≤t} but not only on the state V_t.

Multivariate (rough) Volterra-Heston type models

• Log-price process of *d* assets:

$$dP_t = -rac{1}{2} ext{diag}(V_t) dt + X_t^ op d\widetilde{W}_t,$$

where \widetilde{W} is an *n*-dimensional Brownian motion given by $\widetilde{W}_t = \sqrt{1 - \rho^\top \rho} \widetilde{B}_t + W_t \rho$ with $\rho \in \mathbb{R}^d$ and \widetilde{B}_t an *n*-dimensional independent Brownian motion.

Theorem (C. and Teichmann ('19))

The process (λ_t, P_t) is a Markov process on $(\widehat{\mathcal{E}}, \mathbb{R}^d)$. Moreover, it is affine in the sense that for $(y, v) \in (Y(\mathbb{R}^{n \times d}), \mathbb{R}^d)$

 $\mathbb{E}_{\lambda_{0},P_{0}}\left[\exp\left(-\langle y\widehat{\otimes}y,\lambda_{t}\rangle+\langle iv,P_{t}\rangle_{\mathbb{R}^{d}}\right)\right]=\exp(-\varphi_{t}-\langle\psi_{t},\lambda_{0}\rangle+\langle iv,P_{0}\rangle_{\mathbb{R}^{d}}),$

where ψ satisfies an Riccati differential equation in the space of matrix valued functions and $\varphi_t = n \int_0^t \langle \psi_s, \nu \widehat{\otimes} \nu \rangle ds$.

Conclusions

- Review of one-dimensional rough volatility models
- Some empirical evidence for rough covariance
- S^d₊-valued affine jump processes that can serve similarly well as covariance models in particular in view of Hawkes processes and microstructural foundations
- Construction of an infinite dimensional Wishart processes and (rough) Volterra Wishart processes
- Multivariate rough Heston model
- Future work
 - True microstructural foundations for these models
 - Multivariate quadratic Hawkes models infinite dimensional lifts

Thank you for your attention!